Возможно, вы сменили регион при заполнении корзины.
Часть товаров из корзины будет перемещена в статус отложенных
и не сможет быть оформлена для заказа, если вы продолжите работу в данном регионе
Традиционная широкопольная флуоресцентная микроскопия стала одним из самых популярных методов в микроскопии благодаря высокой чувствительности и хорошему контрасту изучаемых структур. Однако метод хорошо работает только для тонких объектов (например, для монослоя клеток). При увеличении толщины объекта изображение становится менее контрастным (более «размытым») за счет того, что помимо света в плоскости фокусировки, в объектив попадает также свет выше и ниже фокальной плоскости, «засвечивая» изображение. Такая «засветка» становится еще больше при большем увеличении объектива. Для борьбы с эти эффектом было придумано несколько стратегий: собирать свет только из фокальной плоскости (конфокальная микроскопия), вызывать флуоресценцию только в фокальной плоскости (мультифотонная микроскопия), использовать структурированный свет с последующей компьютерной обработкой (микроскопия структурированного освещения). Получаемые изображения становятся более контрастными, такую четкую картину можно получать на разной глубине объекта (т.е. получить оптический срез), что позволяет 1) заглянуть внутрь толстого объекта, например, тотального препарата или толстого среза, 2) сделать несколько оптических срезов на разной глубине и построить объемную (3D) реконструкцию объекта.
A1R MP – это система получения мультифотонных изображений, оснащенная гальванометрическим сканером высокого разрешения и высокоскоростным резонансным сканером, которые позволяют регистрировать изображения со скоростью от 30 кадров в секунду при разрешении 512 х 512 пикселей до 420 кадров в секунду в режиме полосового сканирования.
Четырехканальные приемники, не требующие десканирования, с более высокой чувствительностью, пониженным темновым током и широким спектральным диапазоном позволяют в реальном времени разделять отклик от близко расположенных зондов для получения точных и высококонтрастных спектральных изображений.
Резонансный сканер позволяет регистрировать изображения со скоростью до 420 кадров в секунду;
высокоскоростное формирование изображений глубоких слоев живых образцов с помощью не требующего десканирования NDD-детектора с высокой чувствительностью;
высокоскоростное и высокоточное разделение за счет использования 4-канального NDD-детектора;
юстировка мультифотонного лазерного луча одним нажатием кнопки.
Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.
Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.
Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.
Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.
Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.
Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.
Методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.
Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.
Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.
Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.
Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.
А1 – гибкая, полностью автоматизированная конфокальная система формирования изображений.
A1R – конфокальная система с гибридным сканером обеспечивает сверхбыструю регистрацию изображения с высоким разрешением.
Высокоэффективный спектральный детектор регистрирует сигнал флуоресценции при одновременном возбуждении нескольких длин волн;
одновременное возбуждение 4 лазерами;
получение изображения 32 каналами (512х32 пикселей) со скоростью 24 кадра/сек;
точное спектральное разделение в режиме реального времени;
функция V-фильтрации регулирует чувствительность каждого из 4-спектральных диапазонов, благодаря чему можно изготавливать настраиваемые фильтры, оптимальные для различных флуоресцентных красителей;
гибридный сканер, способный регистрировать изображение со скоростью 420 кадров/сек (512х32 пикселей), позволяет одновременно проводить фотоактивацию (модель A1R);
регистрация изображения с высоким разрешением – до 4096х4096 пикселей;
благодаря VAAS (системе мнимой адаптируемой диафрагмы) засветка устраняется, а яркость изображения сохраняется; различные срезы можно соединить в единое изображение после захвата;
дихроичное зеркало, увеличивающее эффективность флуоресценции на 30%, обеспечивает высокое качество изображения.
Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.
Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.
Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.
Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.
Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.
Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.
Методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.
Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.
Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.
Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.
Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.
Новая конфокальная система, обладающая мощными функциональными особенностями и значительно расширенными спектральными характеристиками.
Стабильность аппаратного и программного обеспечения и оптические данные обеспечивают высокое качество изображения;
гибкость и модульность конструкции;
версия 4.0 ПО NIS-Elements обеспечивает увеличенную точность и чувствительность в захвате изображения;
спектры в широком диапазоне 320 нм регистрируются после одного сканирования;
32 канала спектрального отображения с высокой точностью и чувствительностью;
спектральное разрешение, нм - 2,5, 5, или 10;
разделение спектральных изображений без взаимного влияния;
одновременная 4-канальная регистрация изображения: 3-канальная регистрация конфокального изображения + ДИК.
Технические характеристики:
лазерный модуль - для 3 или 4 лазеров с акустооптической модуляцией, широкий выбор лазеров в диапазоне 400 нм - 647 нм;
детекторы:
v пропускание, нм - 400-750; v стандартный (3 флуоресцентных канала); v детектор проходящего света; v спектральный детектор (32 канала, разрешение спектров 2,5 нм /5 нм/ 10 нм);
конфокальная диафрагма - круглой формы, 6 размеров;
сканер:
v разрешение, пкс - 2048х2048; v скорости сканирования до 100 кадров/сек (512x32) и 8 кадров/сек (512x512, двунаправленно); v трансфокация - 1-1000х;
приложения - 3-х мерная реконструкция, исследования во времени, колокализационный анализ, спектральный анализ, деконволюция, FRAP, FRET, FLIP, фотоактивация, автоматическая сшивка изображений и сканирования областей интереса.
Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.
Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.
Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.
Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.
Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.
Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.
Методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.
Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.
Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.
Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.
Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.
Конфокальная лазерная сканирующая система нового поколения. Позволяет исследовать как живые, так и фиксированные клетки, ткани и целые организмы в шести измерениях. При работе с живыми образцами система сводит к минимуму фототоксичность и фотообесцвечивание образца и предоставляет возможность получения максимальной информации об объекте.
Может комплектоваться 2 лазерными сканерами для одновременного осуществления конфокального, флуоресцентного наблюдения и независимого сканирования вторым лазером для реализации FRAP, FLIP, фотоактивации, фотоконверсии, лазерного удаления и др.
Система спектральной детекции осуществляется на 3 или 5 спектральных каналах. Возможность подключения специального высокочувствительного детектора GaAsP PMT, с увеличением квантовой эффективности на 45%.
Совместимость с моторизованным столиком позволяет использовать FV1200 как инструмент для создания многомерных сканов по 4 координатам: XYZT.
Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.
Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.
Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.
Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.
Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.
Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.
Методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.
Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.
Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.
Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.
Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.
Конфокальная микроскопия постоянно развивается, и в практику внедряются все новые методы исследований для изучения механизмов функционирования организмов на клеточном, субклеточном и молекулярном уровнях, которые с каждым днем становятся все более востребованными в прикладных исследованиях и диагностике. Появление персонального конфокального лазерного сканирующего микроскопа FV10i позволяет расширить границы применения конфокальных методик. Микроскоп FV10i выполняет те же функции, что и высокотехнологичные исследовательские конфокальные сканирующие системы FV1000. В компактный корпус интегрированы все основные компоненты: 4 диодных лазера, спектральный сканирующий детектор, интуитивно понятное программное обеспечение, инкубатор, моторизованный столик, антивибрационная платформа и даже «темная комната». Этот микроскоп идеален для тех, кто только начинает работать с конфокальным методиками, для тех, кто хотел бы освободить исследовательские конфокальные микроскопы от рутинных задач, для диагностических лабораторий, лабораторий с ограниченным бюджетом, для обучающих задач и случаев проведения исследований в условиях ограниченного комфорта, например, на биологических станциях.
Регистрационное удостоверение на медицинское изделие
Росздравнадзора
По запросу
По запросу
Компактный представитель лазерных сканирующих микроскопов серии LSM 7, в средней ценовой
категории, для рутинных задач биологии, медицины и материаловедения. Главным преимуществом является прецизионное спектральное сканирование с уникальным вариабельным вторичным делителем луча.
LSM 700 - компактный конфокальный лазерный сканирующий микроскоп. Уникальная конструкция в сочетании с чувствительными детекторами позволяет максимально минимизировать потери сигнала.
Микроскоп оснащен полупроводниковыми светодиодными лазерами, которые являются надежными, долговечными и стабильными в работе источниками возбуждения. Так как лазерные линии микроскопа LSM 700 равномерно распределены по оптическому спектру, нам достаточно всего четырех лазерных линий для работы со всеми известными флуоресцентными красителями.
Система детекции микроскопа имеет два детектора на основе сверхчувствительных фотоэлектронных умножителей, при этом благодаря уникальному запатентованному вторичному делителю луча «VSD» мы можем производить спектральное сканирование без использования многоканальных громоздких детекторов. Такая конструкция делает дизайн микроскопа компактным и удобным для эксплуатации.
Современное программное обеспечение ZEN 2012 обладает функцией Smart Setup, которая позволяет работать на микроскопе даже начинающему пользователю. Вам просто необходимо выбрать нужные флуоресцентные красители из списка, остальные настройки системы программа сделает самостоятельно. Эта функция, а также возможность сочетать любые режимы (временные серии, Z–Стэки, области интереса, и.т.п) в одном эксперименте, является ключевым преимуществом ZEN. Кроме того, программа имеет расширенные возможности по трехмерной реконструкции объектов из полученных серий оптических срезов.
Технические характеристики:
Высокочувствительные детекторы (каналы) - один или два, в зависимости от конфигурации (биологическая или для задач материаловедения);
Произвольный выбор спектрального диапазона регистрации сигнала - одновременно в двух каналах с шагом до 1 нм;
Сканирующее разрешение от 4 х 1 до 2048 х 2048 пикселей;
Скорость сканирования 13 х 2 скоростей сканирования;
5 рамок/сек при 512 х 512 пикселей или 2600 линий/сек при 512 пикселей;
Сканирующее увеличение ZOOM от 0,5х до 40х с шагом 0,1х;
Свободное вращение на 360 ° сканирующей рамки;
Моторизованный конфокальный Pinhole с плавным изменением диаметра и координат;
Разрядность данных - 8, 12 или 16 бит;
VIS-AOTF температурно-стабилизированный акустооптический контроль интенсивности лазерных линий,
время переключения < 5 мксек;
Лазеры с предустановленными, заранее отъюстированными световодами (Pigtail-coupled);
Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.
Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.
Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.
Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.
Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.
Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.
Методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.
Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.
Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.
Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.
Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.
Конфокальная микроскопия постоянно развивается, и в практику внедряются все новые методы исследований для изучения механизмов функционирования организмов на клеточном, субклеточном и молекулярном уровнях, которые с каждым днем становятся все более востребованными в прикладных исследованиях и диагностике. Появление персонального конфокального лазерного сканирующего микроскопа FV10i позволяет расширить границы применения конфокальных методик. Микроскоп FV10i выполняет те же функции, что и высокотехнологичные исследовательские конфокальные сканирующие системы FV1000. В компактный корпус интегрированы все основные компоненты: 4 диодных лазера, спектральный сканирующий детектор, интуитивно понятное программное обеспечение, инкубатор, моторизованный столик, антивибрационная платформа и даже «темная комната». Этот микроскоп идеален для тех, кто только начинает работать с конфокальным методиками, для тех, кто хотел бы освободить исследовательские конфокальные микроскопы от рутинных задач, для диагностических лабораторий, лабораторий с ограниченным бюджетом, для обучающих задач и случаев проведения исследований в условиях ограниченного комфорта, например, на биологических станциях.
Регистрационное удостоверение на медицинское изделие
Росздравнадзора
По запросу
По запросу
Конфокальный лазерный сканирующий микроскоп с уникальной оптической схемой и системой детектирования, которые позволяют получать оптические срезы с максимальной эффективностью. Вы можете работать с мультиканальной флуоресценцией вплоть до десяти красителей и использовать непрерывную спектральную детекцию во всем видимом диапазоне длин волн.
LSM 710 на инвертированном штативе микроскопа Axio Observe Z1 - это непревзойденный конфокальный микроскоп для клеточной биологии и биологии развития. Совместно с прямым штативом AxioImager или AxioEmainer - LSM 710 превращается в инструмент для работы в нейробиологии, физиологии и изучении биовзаимодействий в самом широком спектре экспериментов.
Оптическая схема предполагает использование до восьми лазерных портов и любую комбинацию лазерных линий от близкого УФ спектра до ИК. 34-канальный модуль детекции QUASAR позволяет оптимальную стратегию захвата для различных спектров излучения, без привязки к фильтрам и дихроичным зеркалам. Вы всегда можете направить любую часть спектра сигнала на любой выбранный Вами детектор.
Спектральное сканирование предполагает эксперименты с высоким разрешением и обнаружением до 10 каналов одновременно.
В сканирующем модуле LSM 710 используется передовое техническое решение: возвратный контур спектральной переработки (Spectral Recycling Loop), обеспечивающий усиление сигнала за счет многократного повторного пропускания через спектральную решетку всех неразделенных частей флуоресцентного сигнала. Коррекция плоскости поляризации части флуоресценции увеличивает суммарный эмиссионный сигнал в среднем на 15 -17 %!
Модификация LSM 710 NLO - это лазерный сканирующий микроскоп, оснащенный фемтосекундным мультифотонным лазером, генерирующим излучение высокой плотности в инфракрасной области 680-1080 нм. Благодаря свойствам такого лазера мы можем проникать на глубину до 500 мкм, при этом возбуждение происходит только внутри фокального микрообъема, менее 0,1 мкм3, что позволяет бережно воздействовать на живую ткань.
Технические характеристики:
Сканирующий модуль с двумя, тремя одноканальными высокочувствительными детекторами или с 34-х канальным спектральным детектором для быстрого параллельного захвата полного эмиссионного профиля;
Произвольный выбор спектрального диапазона регистрации сигнала с разрешением до 3 нм (последовательное сканирование) и 10 нм (параллельное сканирование);
Варианты штативов - инвертированный AxioObserver;
прямой AxioImager;
прямой с фиксированным столиком AxioExaminer.
Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.
Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.
Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.
Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.
Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.
Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.
Методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.
Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.
Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.
Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.
Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.
Конфокальная микроскопия постоянно развивается, и в практику внедряются все новые методы исследований для изучения механизмов функционирования организмов на клеточном, субклеточном и молекулярном уровнях, которые с каждым днем становятся все более востребованными в прикладных исследованиях и диагностике. Появление персонального конфокального лазерного сканирующего микроскопа FV10i позволяет расширить границы применения конфокальных методик. Микроскоп FV10i выполняет те же функции, что и высокотехнологичные исследовательские конфокальные сканирующие системы FV1000. В компактный корпус интегрированы все основные компоненты: 4 диодных лазера, спектральный сканирующий детектор, интуитивно понятное программное обеспечение, инкубатор, моторизованный столик, антивибрационная платформа и даже «темная комната». Этот микроскоп идеален для тех, кто только начинает работать с конфокальным методиками, для тех, кто хотел бы освободить исследовательские конфокальные микроскопы от рутинных задач, для диагностических лабораторий, лабораторий с ограниченным бюджетом, для обучающих задач и случаев проведения исследований в условиях ограниченного комфорта, например, на биологических станциях.
Регистрационное удостоверение на медицинское изделие
Росздравнадзора
По запросу
По запросу
Конфокальный лазерный сканирующий микроскоп, обладающий уникальными характеристиками по чувствительности. 32-канальный спектральный детектор GaAsP имеет квантовую эффективность и соотношение сигнал-шум почти в два раза выше, чем обычные детекторы на основе ФЭУ.
LSM 780 - конфокальный лазерный сканирующий микроскоп, обладающий уникальными характеристиками по чувствительности. 32-канальный спектральный детектор GaAsP имеет квантовую эффективность и соотношение сигнал-шум почти в два раза выше, чем обычные детекторы на основе ФЭУ. Такие выдающиеся характеристики получены благодаря использованию Галлий-Арсенид-Фосфора - полупроводникового материала с идеальными характеристиками для преобразования фотонов в электрический сигнал. Благодаря такой чувствительности вы проводите эксперименты с меньшим временем воздействия на образец и меньшими мощностями лазера, что является ключевым преимуществом в изучении живых клеток.
Благодаря инновационной системе детекции, возможно проведение флуоресцентной корреляционной спектроскопии и подсчет фотонов без дополнительных внешних датчиков. В составе LSM 780 доступен уникальный ультрафиолетовый лазер с длиной волны 355 нм для проведения фотоманипуляций.
Модификация LSM 780 NLO - это лазерный сканирующий микроскоп, оснащенный фемтосекуным мультифотонным лазером генерирующим излучение высокой плотности в инфракрасной области 680-1080 нм. Благодаря свойствам такого лазера, мы можем проникать на глубину до 500 мкм, при этом возбуждение происходит только внутри фокального микрообъема, менее 0,1 мкм3, что позволяет бережно воздействовать на живую ткань.
Технические характеристики:
Сканирующий модуль с 32-канальным GaAsP детектором и двумя ФЭУ (охлаждаемый в красной области спектра);
Произвольный выбор спектрального диапазона регистрации сигнала с разрешением до 3 нм (последовательное сканирование) и 10 нм (параллельное сканирование);
Детектор проходящего света;
Два независимых гальванометрических сканирующих зеркала;
Сканирующее разрешение от 4 х 1 до 6144 х 6144 пикселей;
Скорость сканирования 14 х 2 скоростей сканирования;
8 рамок/сек при 512 х 512 пикселей, 0.38 мсек/линию из 512 пикселей (2619 линий/сек);
Сканирующее увеличение ZOOM от 0.6х до 40х с шагом 0.1х;
Свободное вращение на 360° сканирующей рамки;
Моторизованный конфокальный pinhole плавной регулировкой диаметра и координат;
Варианты штативов - инвертированный AxioObserver, прямой AxioImager, прямой с фиксированнм столиком AxioExaminer.
Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.
Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.
Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.
Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.
Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.
Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.
Методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.
Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.
Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.
Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.
Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.
Конфокальная микроскопия постоянно развивается, и в практику внедряются все новые методы исследований для изучения механизмов функционирования организмов на клеточном, субклеточном и молекулярном уровнях, которые с каждым днем становятся все более востребованными в прикладных исследованиях и диагностике. Появление персонального конфокального лазерного сканирующего микроскопа FV10i позволяет расширить границы применения конфокальных методик. Микроскоп FV10i выполняет те же функции, что и высокотехнологичные исследовательские конфокальные сканирующие системы FV1000. В компактный корпус интегрированы все основные компоненты: 4 диодных лазера, спектральный сканирующий детектор, интуитивно понятное программное обеспечение, инкубатор, моторизованный столик, антивибрационная платформа и даже «темная комната». Этот микроскоп идеален для тех, кто только начинает работать с конфокальным методиками, для тех, кто хотел бы освободить исследовательские конфокальные микроскопы от рутинных задач, для диагностических лабораторий, лабораторий с ограниченным бюджетом, для обучающих задач и случаев проведения исследований в условиях ограниченного комфорта, например, на биологических станциях.
CLSM600 — это новый лазерный сканирующий конфокальный микроскоп, выпущенный китайской компанией Sunny Optical Technology (Group) Co., Ltd. (Китай) (Рис. 1).
CLSM600 предназначен для широкого круга задач в морфологии, физиологии, иммунологии, генетике и других областях (Рис. 2, 3.). Это идеальный лазерный сканирующий конфокальный микроскоп для передовых биомедицинских исследований.
Рис. 2. Применение лазерного сканирующего конфокального микроскопа CLSM600 в биологии.
Рис. 3. Примеры использования лазерного сканирующего конфокального микроскопа CLSM600:
1) Культура клеток Hek293T, 60× увеличение + DIC (Differential Interference Contrast). 2) Поперечный срез стебля кукурузы, 40× увеличение. 3) Рыба данио-рерио, 20× увеличение, Z стек серии «оптических» срезов. 4) Трехмерная реконструкция органоидов.
Микроскоп может оснащаться широким спектром объективов с высокой числовой апертурой, идеально подходит для съемки различных типов конфокальных образцов.
Высококачественное исполнение оптического пути CLSM600 обеспечивает отличное соотношение сигнал-шум даже для «тусклых» образцов. Пинхол уникальной структуры эффективно устраняет внефокусный свет, обеспечивая максимальную чёткость изображения.
Простой в использовании, отлично оптимизированный дизайн интерфейса CLSM600 позволяет легко контролировать процесс съемки образца.
Система управления CLSM600 лазерного сканирующего конфокального микроскопа
Точная моторизация перемещения по оси Z позволяет быстро менять глубину фокуса в соответствии с изображением в реальном времени. AF — автофокус одной кнопкой. Встроенные кнопки управления с обеих сторон корпуса обеспечивают быстрое переключение объективов, настройку конденсора, изменение яркости, настройку флуоресценции, повышая удобство работы.
Объективы
CLSM600 имеет два набора объективов, апохроматические APO (apochromatic objective) ( 2X-100X ) (Рис. 4.) и суперапохроматические SAPO (super apochromatic objective) (10X-100X) (Рис. 5.), обеспечивая широкий диапазон увеличений.
Рис.4. Апохроматические объективы APO (apochromatic objective)
CLSM600 поддерживает одноканальную или многоканальную двумерную визуализацию (XY), трехканальную визуализацию (XYZ), четырёхканальную визуализацию (XYZT) и сканирование всех областей образца. Визуализация, фотообесцвечивание и фотостимуляция могут выполняться в определяемых пользователем режимах ROI (region of interest). Поддерживаются комфортная работа с Z-стеками, сшивание больших изображений, коррекция масштаба, постобработка флуоресценции, запись данных и т.д.
Технические характеристики конфокального микроскопа CLSM600
Переключение и интенсивность всех лазеров можно регулировать самостоятельно. Лазеры автоматически переходить в состояние off state, если они не используются в течение короткого времени.
Инвертированный микроскоп исследовательского класса IRX60
Оптическая система
Оптика скорректированная на бесконечность, с исправленной хроматической аберрацией.
Наблюдательная голова
20°-45° — регулированное наклонение, привёрнутое изображение, бинокулярный смотровой тубус с креплением, диапазон регулировки межзрачкового расстояния — 50~76 мм.
Окуляр
Широкопольный окуляр с высокой точкой обзора PL10× /22 мм, регулируемая диоптрия, микрометр.
Объективы
APO (apochromatic objective)
SAPO (super apochromatic objective)
Конструкция (рамки)
Низкое положение руки, грубый и микро-коаксиальный механизм фокусировки с электроприводом, ход 10.5mm, точность 1um; моторизованое переключение оптических путей, двойной оптический путь с защитой глаз, 6-позиционная моторизованная турель объективов с портом DIC, фотовыход для подключения камеры.
Платформа
Ручная механическая платформа, размер стола 300 мм (X) × 240 мм (Y), диапазон перемещения 135 мм (X) × 85 мм (Y).
Электрический столик, размер стола не менее 260 мм (X) × 153 мм (Y), диапазон перемещения 110 мм (X) × 75 мм (Y), с независимой ручкой управления; максимальная скорость 3 мм/с, точность повторного позиционирования ±1 мкм; оснащен для чашки Петри 35 мм.
Конденсор
Моторизованный конденсор с 7 отверстиями, числовая апертура 0,55, диаметр 27 мм; 3 отверстия для φ30 мм (фазоконтраст), 4 отверстия для φ38 мм (ДИК); поддержка светлого поля, фазового контраста, наблюдения ДИК (включая набор поляризатора).
Система флуоресцентного освещения
8 – отверстная флуоресцентна система, система может определить положение поворотного стола, размещенного на верхнем и нижнем ярусе; и имеет функциональную электрического заслонку, которая может напрямую блокировать флуоресцентный источник света, с флуоресцентным фильтром, блокирующим линзуp: B/G/UV, и т.д.
Программное обеспечение
Сканирование изображения
Параметры камеры и параметры предварительного просмотра; двух повторное сканирование; возможность поворота области сканирования или выбранной области (ROI); сканирование полного поля зрения ; одноцветные или многоцветные, двухмерные изображения (XY), трехмерная изображения (XYZ),четырёхмерная изображения (XYZT) и многоместное сканирование.
Обработка данных
Обработка многоцветного анализа, флуоресцентная и дифференциальная интерференция (DIC), совмещение изображения; калибровка и добавление шкалы; постобработка изображения; Z сток серия оптических срезов на разной глубине объекта.
Бережное отношение к данным (изображениям)
У CLSM600 имеется множество дополнительных опций, которые являются не обязательными. Можно автоматически сохранять изображение, имеется несколько форматов сохранения изображения, заодно можно сохранить и все параметры изображения.
Система предназначена для наблюдения за процессами, происходящими на поверхности клетки. Полное отражение внефокусного света позволяет получать изображения клеточной мембраны с непревзойденным разрешением.
Области применения: изучение быстродвижущихся структур, исследование трансмембранного переноса (в том числе транспорта кальция), FRET.
Система базируется на модульной платформе инвертированного микроскопа Axio Observer с шагом движения по Z -10 нм и с широким спектром дополнительных опций инкубации. TIRF слайдер просто вставляется в плоскость полевой диафрагмы микроскопа, а программное обеспечение ZEN дает возможность полностью управлять системой и дает широкий спектр дополнительных функций анализа и обработки изображения. В системе используются специализированные высокоапертурные объективы, а также специально разработанные наборы фильтров, благодаря которым вы можете добиться максимального разрешения и контрастности.
Флуоресценция полного внутреннего отражения с использованием лазеров в качестве источников легко сочетается со всеми известными светлопольными методами контрастирования при обеспечении надежной лазерной безопасности.
Система TIRF 3 зарекомендовала себя в определении областей клеточной адгезии с высокой четкостью и разрешением, визуализации энодо- и экзоцитоза везикул с максимальной быстротой, детекции отдельных молекул с высокой контрастностью при полном подавлении фона, а также наблюдении межклеточных взаимодействий с высокой чувствительностью.
специализированные объективы - αPlan-Fluar 100x/1.45 Oil (угол TIRF до 72°), αPlan-Apochromat 100x/1.46 Oil (угол TIRF до 73,2°);
чувствительные камеры, высокоэффективные мультилинейные светофильтры, пьезорегулируемое изменение угла лазерного луча - позволяют исследовать быстротекущие динамические процессы, например – трансмембраннй перенос;
Традиционная широкопольная флуоресцентная микроскопия стала одним из самых популярных методов в микроскопии благодаря высокой чувствительности и хорошему контрасту изучаемых структур. Однако метод хорошо работает только для тонких объектов (например, для монослоя клеток). При увеличении толщины объекта изображение становится менее контрастным (более «размытым») за счет того, что помимо света в плоскости фокусировки, в объектив попадает также свет выше и ниже фокальной плоскости, «засвечивая» изображение. Такая «засветка» становится еще больше при большем увеличении объектива. Для борьбы с эти эффектом было придумано несколько стратегий: собирать свет только из фокальной плоскости (конфокальная микроскопия), вызывать флуоресценцию только в фокальной плоскости (мультифотонная микроскопия), использовать структурированный свет с последующей компьютерной обработкой (микроскопия структурированного освещения). Получаемые изображения становятся более контрастными, такую четкую картину можно получать на разной глубине объекта (т.е. получить оптический срез), что позволяет 1) заглянуть внутрь толстого объекта, например, тотального препарата или толстого среза, 2) сделать несколько оптических срезов на разной глубине и построить объемную (3D) реконструкцию объекта.
Конфокальная микроскопия
Конфокальная микроскопия – метод флуоресцентной микроскопии, основанный на применении точечной диафрагмы (пинхол, pinhole) для устранения внефокусного света, что позволяет улучшить пространственное разрешение и контраст изображения. Метод позволяет получать четкое изображение с небольшого по глубине участка препарата (оптический срез). Изменяя фокус объектива, можно получить серию оптических срезов на разной глубине объекта (z-стек), затем на ее основе реконструировать трехмерное изображение образца. Конфокальная микроскопия нашла широкое применение в биологии и медицине, материаловедении и физике полупроводников
Традиционно в качестве источника света для конфокального микроскопа используется лазер. При этом флуоресценция возбуждается в локальной точке и попадает на высокочувствительный детектор (фотоэлектронный умножитель, лавинный фотодиод и т.п.). Для формирования двумерного изображения проводится растровое сканирование образца: лазерный пучок перемещается по образцу, сканируя его точка за точкой. Такой метод сканирования может занимать продолжительное время и оказаться неудобным в исследованиях, где флуоресцентный сигнал быстро меняет локализацию или быстро выгорает либо в случаях, когда необходимо уменьшить фототоксическое воздействие лазерного излучения.
Значительное увеличение скорости сканирования удалось достигнуть, расположив многочисленные пинхолы на вращающемся диске (диск Нипкова, spinning-disk). Свет от галогеновой лампы (или светодиода) освещает весь объект, возбужденная флуоресценция проходит через объектив и попадает на диск Нипкова. Пинхолы на диске Нипкова отсеивают внефокусный свет, передавая изображение из фокальной плоскости на матрицу фотокамеры. При небольших скоростях вращения диска на изображении еще заметны спиралевидные следы перемещения пинхолов, но при высоких скоростях изображение выглядит непрерывным. Лазерный конфокальный микроскоп на основе вращающегося диска позволяет снимать со скоростью от 30 до нескольких тысяч кадров в секунду, это инструмент выбора для высокоскоростной съёмки динамических процессов в клетках, долговременной съемки с минимальной фототоксичностью.
Мультифотонная микроскопия (multiphoton, MP)
При традиционной лазерной конфокальной микроскопии свет одновременно облучает, хотя и локальную точку по осям X и Y, но проникает на значительную глубину (т.е. по оси Z), вызывая флуоресценцию флуорохромов. Толщина оптического среза, обусловленная размером пинхола, иногда бывает избыточной для оптимального разрешения, а уменьшение пинхола приводит к падению интенсивности флуоресцентного сигнала. Выгорание флуорохромов и фототоксичность выше и ниже области интереса также иногда бывает нежелательно. Глубина проникновения света также ограничена: чем меньше длина волны, тем меньше глубина, на которую могут проникнуть фотоны. Это не удобно при изучения толстых образцов, поскольку как раз коротковолновое излучение, имеющее бо́льшую энергию, используется для возбуждения большинства флуорохромов. Мультифотонная микроскопия основана на использовании длинноволнового излучения (как правило, 700 – 1000 нм, т.е. инфракрасного света), каждый из фотонов несет энергию, недостаточную для возбуждения молекулы флуорохрома, но при одновременном воздействии двух или более таких фотонов, суммарной энергии становится достаточно, чтобы вызвать флуоресценцию. При помощи этого метода можно вызвать флуоресценцию в очень локальном участке как по осям X и Y, так и по Z, следовательно нет «мешающего» света выше и ниже точки фокуса, пинхол оказывается не нужен. Разрешение по Z оказывается выше, фототоксичность за пределами фокальной плоскости ниже, чем при классической конфокальной микроскопии. Глубина проникновения инфракрасного света самая большая, поэтому возможно анализировать объекты до 1 мм толщиной. К недостаткам можно отнести более высокую стоимость оборудования, при этом методе зачастую одновременно возбуждаются все флуорохромы, поэтому больше внимания нужно уделять подбору красителей для многоцветного окрашивания.
Еще одной попыткой убрать флуоресцентный сигнал выше и ниже плоскости фокуса стала разработка метода структурированного освещения. В своем традиционном виде этот метод основан на использовании оптической решетки, которая проецируется на объект. Для каждого положения фокуса на объекте производится как минимум три снимка с разным положением проекции решетки. Наиболее четкое изображение решетки будет там, где объект находится в фокальной плоскости. Программное обеспечение анализирует контрастность изображения решетки в разных положениях, удаляет всю информацию по изображению вне фокуса, затем совмещает все снимки в один оптический срез с разрешением изображения, сопоставимым с конфокальной микроскопией. Модулем структурированного освещения может оснащаться флуоресцентный конфокальный микроскоп или стереомикроскоп.
Заключение
Когда качество изображения широкопольного флуоресцентного микроскопа перестает соответствовать решаемым задачам, исследователю приходится обращаться к более сложным системам. Выбор определяется задачами и бюджетом. Как правило, традиционного конфокального микроскопа достаточно для большинства приложений. Если планируется дальнейшее усложнение задач, возможно, имеет смысл выбирать конфигурацию конфокального микроскопа подороже, чем было бы достаточно, но с возможностью дополнения в дальнейшем необходимыми модулями: модулем мультифотонного возбуждения или системой сверхвысокого разрешения. Диаэм предлагает системы разного уровня сложности от разных производителей. Наши специалисты всегда доступны для обсуждения задач и подбора оптимальной конфигурации.
Уважаемые коллеги!
В компании Диаэм 6 сентября – нерабочий день.
Вы можете оформить заказ самостоятельно, воспользовавшись сервисом или личным кабинетом на сайте.
Мы также можем принять Ваш заказ по электронной почте info@dia-m.ru.
Регистрация на сайте компании Диаэм доступна только для юридических лиц, для физических лиц сделать заказ и узнать его статус можно без регистрации или обратившись в компанию по телефону +7 495-745-0508 или электронной почте info@dia-m.ru
Для повышения удобства работы с сайтом на нем используются файлы cookie.
В cookie содержатся данные о Ваших прошлых посещениях сайта. Если Вы не хотите, чтобы эти данные
обрабатывались, отключите cookie в настройках браузера.