Анализаторы фармацевтической продукции и сырья

Анализаторы фармацевтической продукции и сырья — специализированные аналитические приборы, способные определять широкий спектр параметров. В фармацевтической отрасли находят применение разные виды этих анализаторов, в т. ч. проточные системы «мокрой» химии, рамановские (Раман) и инфракрасные (ИК) спектрометры, автоматические анализаторы текстуры и т. д.
Пока нет данных. Перейти в каталог
Сортировать по:
Цена в валюте производителя / в рублях
NIRFlex N-500
По запросу
По запросу

Контроль и обеспечение качества при производстве фармацевтических препаратов осуществляются с использованием классических методов химического анализа. Получение результатов при таких методах, как правило, требует значительных временных затрат, а также использования вредных химических веществ. Соответственно, получение результатов происходит недостаточно быстро и не соответствует требованиям производства. Благодаря БИК-спектроскопии многие из таких медленных методов могут быть заменены. Современные программные средства для проведения анализа способны обеспечить даже более качественный анализ сырья и продукции.

По сравнению с традиционными аналитическими методиками БИК-спектроскопия позволяет:

  • проводить количественный и качественный анализ, не разрушая образец;
  • получать результаты быстрее;
  • сократить сроки принятия решений;
  • снизить удельные затраты на проведение анализа;
  • осуществлять анализ по нескольким параметрам одновременно;
  • повысить качество продукции и оптимизировать валовые доходы.

Комплексные решения на базе БИК — это аналитические решения для всей производственной цепочки: от приемки товара и испытания качества материалов до выпуска готовой продукции. В БИК-Фурье-спектрометрах используется технология поляризации БИК-Фурье, позволяющая быстро получить точные и надежные результаты по нескольким параметрам одновременно, например, содержанию влаги, различных фармацевтических веществ и примесей. Эти быстродействующие и надежные приборы позволят оптимизировать процессы лаборатории.


Области применения в фармацевтической промышленности:

  • процессно-аналитическая технология;
  • идентификация сырья;
  • экспресс - анализ при производстве таблеток;
  • конечные испытания таблетированных препаратов.

NIRFlex N-500, Buchi - универсальное, модульное, комплексное решение на базе БИК.

Применение:

  • анализ входного фармацевтического сырья на складе в оригинальной таре без нарушения ее целостности;
  • анализ качества выпускаемой продукции в процессе изготовления в режиме реального времени, для чего применяются оптоволоконные твердотельные и жидкостные датчики;
  • анализ готового таблетированного и капсулированного продукта в лаборатории с применением твердотельного датчика NIRFlex Solids Transmittance.

Остальные варианты проведения анализа позволяют еще больше расширить сферу применения прибора в лабораторных условиях (с использованием твердотельных и жидкостных датчиков NIRFlex Solids и NIRFlex Liquids).

Основой этого прибора являются две кварцевые призмы. Когда поляризованный под углом 45° луч падает на анизотропный кварц, этот луч разделяется на два вектора, которые проходят в кристалл с разными фазовыми скоростями. Путем перемещения одной призмы относительно другой векторы подвергаются воздействию систематически изменяющегося фазового сдвига относительно друг друга. Таким образом, изменяется поляризация комбинированного луча. При использовании монохромного света, это приводит к синусоидальному изменению излучения за вторым поляризатором, а для полихромного света формируется интерферограмма.

БИК-спектрометр NIRFlex N-500 имеет две спектральные лампы, что позволяет не прерывать работу в случае выхода одной из них из строя. Благодаря надежной и точной технологии поляризации спектрометр Buchi является более устойчивым к динамическим нагрузкам по сравнению с прочими БИК-Фурье анализаторами.

Каждый спектрометр NIRFlex N-500 снабжён различными фильтрами и стандартом длины волны. Всё это обеспечивает точность установки требуемой длины волны, оптимальное отношение сигнал-шум и контроль линейности путём использования специально разработанных модулей ПО. Эта проверка пригодности системы (SST) является обязательной в фармацевтической промышленности, для соответствия нормативным документам.

NIRFlex N-500 разработан с учетом специфических нужд и требований клиентов в различных областях деятельности: от лаборатории до производственных линий. Благодаря ряду измерительных датчиков возможна его оптимальная индивидуальная настройка, позволяющая работать с различными образцами и в разных направлениях: научно-исследовательских, при контроле качества сырья или контроле технологического процесса.


Особенности:

  • модульная концепция, представляющая один спектрометр и различные датчики измерений;
  • пять измерительных ячеек с более чем десятью приставками для различных анализов;
  • уникальный модуль с двойными лампами предотвращает простои в случае отказов ламп;
  • источник БИК спектр - лазер HeNe (гелий-неоновый) может заменяться пользователями;
  • высокие рабочие характеристики при небольших размерах;
  • внутренние стандарты непрерывно контролируют идеальное состояние спектрометра, все данные надёжно сохраняются в базе данных NIRWare;
  • предварительные калибровки, спектральные библиотеки, хемометрическое ПО NIRCal с запатентованной программой калибровки.

Характеристики:

  • спектральный диапазон, нм / см-1 - 800 – 2500 / 12500 – 4000;
  • разрешающая способность, см-1 - 8 (с аподизацией);
  • тип интерферометра - поляризационный интерферометр с призмами TeO2;
  • тип лампы - галогенная лампа накаливания с вольфрамовой нитью;
  • тип лазера - гелий-неоновый лазер;
  • волновая точность, см-1 - ± 0,2 (измерена газовой ячейкой HF при комнатной температуре 25°C ± 5°C);
  • отношение сигнал-шум - 10000 (шум пик-к-пику);
  • число сканирований в секунду – 2−4;
  • аналого-цифровой преобразователь, бит - 24;
  • габариты, ШxВхГ, мм - 350x250х450.

NIRFlex N-500 применяется в комплекте с различными измерительными ячейками. Каждая из ячеек разработана и настроена с целью точного соответствия определенной сфере назначения. Спектрометр может комплектоваться от одной до пяти ячеек.

  • Анализаторы фармацевтической продукции и сырья
Аргус-Bio
485 714,=
485 714,= RUB

Программное обеспечение для морфометрии изображений биологических препаратов – мощный универсальный инструмент, позволяющий напрямую управлять
процессами ввода изображений, сканированием препаратов, а также автоматизировать методики рутинного анализа изображений биологических препаратов и образцов: подсчет
количества, измерения и классификацию клеток, определение ядерно-цитоплазматического отношения, плоидности по Фельгену, вычисление
площади и объемной доли составляющих в биологических тканях и мн. др.

Основные возможности программы:

Основу программы составляют методики – настраиваемые и сохраняемые последовательности операций по обработке изображения, выполняемых в автоматическом режиме.
Программа содержит набор методик, предназначенных решения для наиболее часто встречающихся задач анализа изображений.
При необходимости пользователь может адаптировать любую из методик под свою задачу, изменив настройки работы методики.

  1. Архивирование
  2. Расширенный фокус
  3. Сшивка живого видео
  4. Улучшение качества
  5. Ручные измерения
  6. Распределение по параметру
  7. Процент количества
  8. Стереометрия
  9. Оптическая плотность с указанием фона вручную
  10. Оптическая плотность с вводом фоновых полей
  11. Оптическая плотность с вводом эталонов
  12. Изменение во времени

В комплект поставки могут входить специализированные методики, разработанные для решения специальных задач пользователя. Специализированные методики
могут быть включены в программу на коммерческой основе. Данные методики защищены с помощью электронного ключа, и не могут быть изменены.

На настоящий момент поставляются следующие дополнительные методики:

  1. Плоидность
  2. Ядерно-цитоплазматическое отношение
  3. Ретикулоцитометрия
  4. Подсчет колоний
  5. Измерение частоты
  6. Процент количества жизнеспособных клеток
Методики представляют собой сохраняемые и изменяемые в соответствии с задачей пользователя последовательности обработки изображения. В методику
могут быть включены любые из ключевых и дополнительных функций программы.

Ключевые функции программы:
  • Ввод изображений с помощью телевизионных и цифровых камер (в том числе 8, 10, 12, 16 битных), сканера, открытие изображений из файлов, копирование из буфера.
  • Выделение области интереса на изображении.
  • Преобразование изображений с помощью фильтров (повышение яркости, контраста и визуального качества исходного изображения, морфологические преобразования).
  • Выделение объектов и фаз на изображении по яркости и цвету в автоматическом режиме.
  • Автоматическое измерение выделенных объектов по параметрам площади, размера, формы, положения, движения, цвета, оптическим и пользовательским параметрам.
  • Проведение ручных измерений (линейные, угловые, радиус окружности, подсчет количества объектов и т.д.).
  • Автоматическое измерение объектов, нанесенных на изображение вручную.
  • Функция калибровки программы для проведения измерений площади и размера объектов в реальных величинах.
  • Представление результатов измерений в табличной форме.
  • Широкие возможности классификации объектов.
  • Детальный статистический анализ полученных данных, в том числе построение гистограмм распределения, графиков зависимости, расчет стереологических параметров.
  • Передача изображений и полученных результатов во встроенную базу данных.
  • Сохранение изображений и полученных результатов, вывод на печать в виде стандартных отчетов.
Дополнительные функции программы:
  • Работа с серией изображений, относящихся к одному эксперименту, образцу или препарату. Получение объединенных данных статистического анализа по результатам обработки изображений нескольких полей зрения.
  • Нанесение на изображение графики (текстовых комментариев, стрелок, калибровочных маркеров).
  • Сшивка «живых» изображений полей зрения с получением единого панорамного изображения.
  • Получение резкого изображения из серии изображений, части которых находятся не в фокусе.
  • 3D реконструкция изображения по яркости.
  • Анализ яркостных разрезов.
  • Экспорт таблицы данных в MS Excel.
Пользовательские установки критериев набора достаточности данных.
Для работы в интерактивном режиме доступна версия программного обеспечения для ручных измерений.

Основные возможности программы:
  • ввод изображений с помощью телевизионных и цифровых камер (8, 10, 12, 16 битных), сканера, открытие изображений из файлов, копирование из буфера;
  • работа с серией изображений, относящихся к одному эксперименту, образцу или препарату, и результатами их измерений в составе одного документа;
  • сохранение серии изображений с результатами измерений в одном документе;
  • преобразование изображений с помощью фильтров;
  • нанесение на изображение текста, графики, а также фигур и линий для выделения интересующих элементов, возможность обмена графикой между изображениями;
  • автоматическая «сшивка» изображений;
  • получение резкого изображения из серии изображений, части которых находятся не в фокусе;
  • линейные и угловые измерения, подсчет количества объектов;
  • автоматические измерения для нанесенных вручную контуров объектов (около 40 параметров);
  • статистическая обработка результатов измерений, передача данных в MS Excel;
  • возможность создания многостраничных отчетов;
  • сохранение изображений и данных, вывод на печать.
Дополнительные материалы:
Анализ изображений в медицине, биологии, контроле производства, материаловедении, АргусСофт, буклет, 7 стр.
Анализ мясных и колбасных изделий, АргусСофт, методика, 1 стр.
Анализ твердых субстанций в фармацевтике, АргусСофт, методика, 2 стр.
Исследование и контроль структуры природных и искусственных материалов, АргусСофт, методика, 2 стр.
Контроль микроструктур металлов и сплавов на соответствие стандартам, АргусСофт, методика, 1 стр.
Определение плоидности клеток при раке, АргусСофт, методика, 2 стр.
Оценка степени выполненности зерновок по оптическим параметрам рентгенограмм, АргусСофт, методика, 1 стр.
Оценка степени повреждения зерновок клопом «вредная черепашка», АргусСофт, методика, 1 стр.

Анализаторы фармацевтической продукции и сырья — специализированные аналитические приборы, способные определять широкий спектр параметров. В фармацевтической отрасли находят применение разные виды этих анализаторов, в т. ч. проточные системы «мокрой» химии, рамановские (Раман) и инфракрасные (ИК) спектрометры, автоматические анализаторы текстуры и т. д. Среди этих анализаторов наибольшее распространение получили ИК-Фурье-спектрометры (ИК-спектрометры с Фурье преобразованием), внесенные в государственные фармакопеи России (ОФС.1.2.1.1.0001.15) и других стран.
Анализаторы фармацевтической продукции и сырья обеспечивают высокую точность и скорость оценки фармацевтического сырья и производимых промежуточных продуктов по комплексу физико-химических показателей:

  • содержание воды и органических полярных растворителей;
  • кислотное и йодное число;
  • степень гидроксилизации и дегидроксилизации;
  • наличие полиморфных и кристаллических структур;
  • дисперсный состав.

С помощью Фурье-ИК-спектрометров также проводят неразрушающий анализ качества готовой фармацевтической продукции бесконтактным способом через прозрачную упаковку посредством инфракрасного пропускания или диффузного отражения. Эти анализаторы способны с высокой точностью определять содержание активного фармацевтического ингредиента (АФИ, API) в производимых фармацевтических продуктах: таблетках, капсулах, порошковых и жидких лекарственных формах. Помимо этого, ИК-спектрометры с Фурье преобразованием используют для определения толщины капсульных оболочек, при проведении анализа качества смешивания АФИ с наполнителями и оценки однородности состава партий фармацевтической продукции.

В зависимости от поставленных задач предусмотрена возможность дооснащения этих приборов интегрирующей сферой, оптоволоконными датчиками, автоподатчиком образцов, и т.д. Для размещения образцов в ИК-спектрометрах используют стеклянные или кварцевые кюветы, флаконы, стеклянные стаканы, держатели капсул или таблеток и другие приспособления.

Задействованный в анализаторах фармацевтической продукции и сырья метод ИК-спектрометрии, наряду с вышеуказанными преимуществами, накладывает определенный ряд ограничений на область их применения. В частности, этот способ анализа может приводить к существенным погрешностям в измерениях даже при слабом загрязнении или недостаточном высушивании кюветного отделения. Кроме того, ИК-спектрометрия чрезвычайно чувствительна к температурным перепадам и мало пригодна для регистрации спектров неполярных соединений.

С экспресс-анализом этих веществ в фармацевтической промышленности гораздо лучше справляются рамановские спектрометры, работающие по принципу неупругого или комбинационного рассеяния. В то же время, они заметно уступают ИК-спектрометрам по способности определения полярных групп молекул (см. более подробную информацию ниже).

01.jpg
02.jpg

Общие сведения об инфракрасной спектрометрии и ИК- анализаторах

Метод инфракрасной спектроскопии (колебательная спектроскопия, ИК-спектроскопия, ИКС) основан на исследовании колебательных движений атомов в молекулах при их взаимодействии с электромагнитным излучением в диапазоне волн, ограниченном красной (λ = 0,74 мкм) и микроволновой (λ = 1-2 мм) областями спектра. Эти колебания принято подразделять на валентные (с изменением длины связи между атомами) и деформационные (когда меняются угловое расстояния межатомных связей). При совпадении длин волн колебательного движения и электромагнитного излучения происходит частичное поглощение его энергии полярными группами молекул, обладающих выраженным дипольным моментом (ОН, NH₂, NО₂, C=О, C=N- и др).

Для регистрации ИК-спектра используют разные виды анализаторов (спектрометров), работающих в трех выделенных диапазонах инфракрасных волн: ближнем, также известном под аббревиатурами: БИК или NIR (λ = 0,74 — 2,5 мкм, V = 14 000 — 4000 см⁻¹), среднем, сокращенно: MIR (λ = 2,5 — 50 мкм, V = 4000 — 400 см⁻¹) и дальнем (λ = 50 — 2000 мкм, V = 400 — 10 см⁻¹). С их помощью измеряют интенсивность поглощения или отражения волн инфракрасного спектра в газообразных, жидких и твердых средах. Данные ИК-спектрометрии (А - оптическая абсорбция, коэффициенты: пропускания (T) /отражения (R), λ - длина волны, V - волновая частота) служат основой для проведения хемометрического анализа и последующего определения качественного и количественного состава анализируемого вещества. В отличии от традиционных химических методов его спектрометрический анализ может осуществляться бесконтактно без предварительной пробоподготовки с разрушением образца.

Инфракрасные анализаторы принято подразделить на две основные категории: дисперсионного типа и с Фурье-преобразованием (FTIR).

Дисперсионные ИК-спектрометры

Отличительной особенностью ИК-анализаторов дисперсионного типа является наличие у них монохроматора. В качестве источника ИК-излучения в этих приборах используют: силитовый стержень (штифт, глобар) Нернста, вольфрамовую ленточную лампу, специальные лазеры и пр. Большинство дисперсионных ИК-анализаторов оборудовано двухлучевой оптической системой, позволяющей одновременно регистрировать интенсивность оптического поглощения холостой и анализируемой пробы. Благодаря этому нивелируются возможные ошибки проведения измерений.

В дисперсионном спектрометре кювету с образцом располагают между источником излучения и детектором, а затем подвергают облучению инфракрасными волнами. Прошедший через кювету полихроматический оптический луч поступает через входную щель монохроматора на дифракционную решетку, с помощью которой осуществляется его спектральное разделение. Сформированный ИК-спектр направляется на детектор, в котором происходит определение интенсивности его поглощения на разных длинах волн.

Спектральное разрешение дисперсионных ИК-анализаторов определяется фиксированной шириной щели монохроматора. Чем она уже, тем выше эффективность разрешения и одновременно с этим слабее улавливаемый сигнал. Поэтому при использовании спектрометров дисперсионного типа нередко возникает проблема выбора между разрешающей способностью и отношением сигнал/шум.

ИК-спектрометры с преобразованием Фурье

В анализаторах с Фурье преобразованием вместо монохроматора используют разные типы интерферометров. Чаще всего эти приборы оборудуют интерферометром Майкельсона. Согласно принципиальной схеме его устройства, приведенной на рис. 1, работа Фурье-спектрометра осуществляется следующим образом.
Схема ИК-спектрометра с Фурье преобразованием Создаваемый источником излучения поток инфракрасных волн направляется на полупрозрачную светоделительную пластину (светоделитель), разделяющую его на два луча. Один из них направляется на стационарное зеркало, второй – на подвижное зеркальное устройство, перемещающееся с постоянной скоростью в направлении, перпендикулярном его фронтальной плоскости.

Оба луча, отразившись от зеркал, выходят из интерферометра через светоделитель и фокусируются на образце. В зависимости от величины разности хода подвижного зеркала эти лучи накладываются друг на друга, формируя положительную или отрицательную интерференцию. Далее объединенный интерференционный луч с поверхности или толщи облучаемого образца направляется в детектор пироэлектрического (DTGS) или фотодиодного (полупроводникового) типа (КРТ, MCТ). С его помощью осуществляется запись данных ИК-спектрометрии в виде интерферограммы поглощенного или отраженного излучения.

Посредством Фурье преобразования записанные детектором интерферограммы подвергают аподизации (математической фильтрации), переводя их в исходные (до проведения частотной модуляции) ИК-спектры. Применение специально разработанных программ с использованием библиотек эталонных спектров позволяет автоматически определять принадлежность анализируемых спектральных полос к определенным группам молекул или отдельных веществ и рассчитывать их качественный и количественный состав.

Спектрометры с преобразованием Фурье обладают следующим рядом преимуществ:

  • лучшее соотношение показателей сигнал/шум по сравнению с анализаторами дисперсионного типа; это имеет особенное значение при определении нарушенного полного отражения (Attenuated total reflectance, ATR) сильно поглощающих материалов;
  • возможность одновременной регистрации всех длин волн, поступающих на детектор;
  • высокий уровень спектрального разрешения, обеспечивающего необходимую точность определения волновых чисел;
  • быстрота проведения спектрометрических измерений;
  • осуществление записи ИК-спектра в режиме накопления.

В качестве аналитических приборов ИК-анализаторы обоих типов находят широкое применение в научных исследованиях фундаментального и прикладного плана, диагностической медицине, сельском хозяйстве и целом ряде промышленных отраслей, в т. ч.: фармацевтике, пищевой индустрии, химической и нефтегазовой промышленности, производстве электронных компонентов и т. д.

Рис.1 Схема ИК-спектрометра с Фурье преобразованием

Ваш заказ будет обработан
в ближайшее время.
Мы пришлем уведомление, как только все будет готово. Спасибо!